Proportions of vanishing elements in finite groups

نویسندگان

چکیده

In this paper, we study the proportion of vanishing elements finite groups. We show that every non-abelian group is bounded below by 1/2 and classify all groups whose proportions attain bound. For symmetric degree at least 5, bound 2327/2520 which best possible.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Which elements of a finite group are non-vanishing?

‎Let $G$ be a finite group‎. ‎An element $gin G$ is called non-vanishing‎, ‎if for‎ ‎every irreducible complex character $chi$ of $G$‎, ‎$chi(g)neq 0$‎. ‎The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$‎, ‎is an undirected graph with‎ ‎vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G‎, ‎ tin T}$‎. ‎Let ${rm nv}(G)$ be the set‎ ‎of all non-vanishi...

متن کامل

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

متن کامل

Groups whose set of vanishing elements is exactly a conjugacy class

‎Let $G$ be a finite group‎. ‎We say that an element $g$ in $G$ is a vanishing element if there exists some irreducible character $chi$ of $G$ such that $chi(g)=0$‎. ‎In this paper‎, ‎we classify groups whose set of vanishing elements is exactly a conjugacy class‎.

متن کامل

which elements of a finite group are non-vanishing?

‎let $g$ be a finite group‎. ‎an element $gin g$ is called non-vanishing‎, ‎if for‎ ‎every irreducible complex character $chi$ of $g$‎, ‎$chi(g)neq 0$‎. ‎the bi-cayley graph $bcay(g,t)$ of $g$ with respect to a subset $tsubseteq g$‎, ‎is an undirected graph with‎ ‎vertex set $gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin g‎, ‎ tin t}$‎. ‎let $nv(g)$ be the set‎ ‎of all non-vanishing element...

متن کامل

Generating Random Elements in Finite Groups

Let G be a finite group of order g. A probability distribution Z on G is called ε-uniform if |Z(x) − 1/g| ≤ ε/g for each x ∈ G. If x1, x2, . . . , xm is a list of elements of G, then the random cube Zm := Cube(x1, . . . , xm) is the probability distribution where Zm(y) is proportional to the number of ways in which y can be written as a product x1 1 x ε2 2 · · · xεm m with each εi = 0 or 1. Let...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2021

ISSN: ['1565-8511', '0021-2172']

DOI: https://doi.org/10.1007/s11856-021-2256-4